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Abstract— Many advanced automatic target recognition (ATR)
methods for synthetic aperture radar (SAR) encounter limitations
as they heavily rely on the assumption of a closed-set environ-
ment. Consequently, these methods face challenges in effectively
identifying and classifying targets from novel categories. Therefore,
this paper puts forward an ATR method called threshold-free open-
set learning network (TfOsLN) for unknown category detection and
known category recognition of SAR targets in an open world. On
the basis of generative adversarial network (GAN), the proposed
TfOsLN abandons the threshold-based decision-making mecha-
nism, and formulates the open-set problem as a K+1 classification
problem. First, to avoid model collapse of the generator, we lever-
age Kullback–Leibler (KL) divergence to maximize the difference
between images synthesized by two random noise inputs with the
same label. Then, a dynamic-aware discriminator is proposed to
dynamically learn discriminative features according to the target
category, thereby enhancing the discrimination between known
and unknown categories. Moreover, a multi-task loss is devised
to optimize the proposed method, which aims to perform well on
unknown categories detection and known categories recognition.
Experiments on the moving and stationary target acquisition (MSTAR) and synthetic and measured paired and labeled
experiment (SAMPLE) datasets illustrate that the proposed method is superior to some state-of-the-arts for open-set SAR
target recognition tasks.

Index Terms— Synthetic aperture radar (SAR), automatic target recognition (ATR), generative adversarial network (GAN),
open set recognition (OSR).

I. INTRODUCTION

SYNTHETIC aperture radar plays a major role in the
fields of remote sensing, surveillance, and guidance due

to its high resolution in all-day and all-weather conditions.
Nevertheless, the inherent complexity of SAR imagery, such
as speckle noise and electromagnetic scattering effect, poses
a significant challenge for human interpreters as the number
of collected SAR images continues to increase. Therefore, the
development of SAR image interpretation techniques remains
an important and urgent task.

Automatic target recognition (ATR) is an essential appli-
cation of SAR image interpretation, and it appears to be
one of the most challenging tasks in the SAR community.
Over the past years, target recognition in SAR images has
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continued to make great advancements. Currently, SAR ATR
methods can be roughly divided into two paradigms, i.e.,
tradition-based and learning-based. Among them, tradition-
based method is dedicated to characterizing and distinguishing
targets by their geometric and physical characteristics in the
image domain [1]. In contrast, learning-based method first
focuses on extracting handcrafted features in the transform
domain, and then reasoning the identity of target based on
a predefined classification criterion [2]. Nevertheless, these
methods rely heavily on hand-crafted features, which struggle
to achieve robust target recognition in complex SAR scenarios.

With the vigorous development of deep learning (DL)
technology, it provides an alternative idea for achieving SAR
ATR. After years of continuous efforts, a great number of deep
learning-based SAR ATR methods have been proposed. For
instance, Chen et al. [3] presented an all-convolutional neural
network to achieve SAR target recognition for the first time.
Pei et al. developed a parallel convolutional neural network
to solve the problem of multi-view SAR target recognition
[4]. Ren et al. [5] devised a convolutional capsule network to
extract multi-scale equivariant features for SAR ATR tasks. Li
and Du combined the attribute scattering center model and dis-
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criminative dictionary learning to extract global features that
are more representative for SAR classification [6]. However,
these methods are constrained by the closed-set environment
assumption, i.e., the types of targets encountered during testing
must align with those in the training set. Consequently, in real-
world scenarios, traditional SAR ATR methods will inevitably
misclassify unknown targets into one of known categories.

In order to endow the model with the ability to classify
known categories and detect unknown categories, a novel
learning paradigm called open-set recognition (OSR) [7] has
been introduced. In recent years, many scholars have carried
out research on this problem. Existing methods can be divided
into two main categories: 1) traditional machine learning-based
methods and 2) deep learning-based methods. Some traditional
machine learning algorithms, such as support vector machine
(SVM) [8], Gaussian mixture model [9] and nearest neighbor
classifier [10], [11], have been extended to tackle open-set
recognition tasks. Nevertheless, these methods tend to rely
on hand-crafted feature extraction and parameter selection,
resulting in unstable open-set recognition performance.

Currently, numerous deep learning-based open-set recogni-
tion approaches continue to emerge. Vaze et al. [12] proposed
to exploit the maximum logit score (MLS) as the open-set
indicator. Chen et al. [13] proposed an adversarial recipro-
cal point learning (ARPL) framework to achieve open-set
recognition. Huang et al. [14] presented a novel OSR method
based on class-specific semantic reconstruction (CSSR), which
integrates the merits of auto-encoder and prototype learning.
Recently, scholars have pursued preliminary explorations for
open-set SAR target recognition. Zeng et al. proposed a new
method based on feature extraction network, KL divergence,
and relative position angle, called Fea-DA, to achieve open-
set SAR target recognition [15]. Ma et al. presented a multi-
task learning framework for open-set SAR target recognition
[16]. Giusti et al. [17] examined the openmax (OpenMax)
classifier to detect unknown categories and classify known
categories in SAR images. In [18], a sub-dictionary joint
learning method is proposed for open-set SAR classification.
Safaei et al. [19] proposed a novel module, namely category-
aware binary classifier (CBC), to realize open-set SAR target
recognition. Ma et al. developed an open-set SAR target
recognition method in the incremental learning framework by
utilizing identified unknown targets [20]. However, existing
methods are based on a fixed threshold for open-set SAR target
recognition, whereas the threshold setting is still derived from
empirical knowledge.

To promote the performance of unknown class detection and
known class recognition, this paper proposes a novel method
called threshold-free open-set learning network (TfOsLN) for
open-set SAR target recognition. The main contributions are
summarized as follows.

1) We formulate the open-set SAR target recognition prob-
lem as a K+1 classification problem with a diverse
unknown sample generation strategy.

2) We develop a dynamic-aware discriminator that can
enhance the discrimination between features of known
classes and unknown classes, thus facilitating the detec-
tion of unknown targets.

3) A multi-task loss is proposed to optimize the model,
which can achieve outstanding performance in both un-
known class detection and known class recognition.

II. RELATED WORK

A. Open-set Recognition
The traditional multi-classification problem has undergone

thorough investigation and demonstrated satisfactory perfor-
mance across diverse fields [6], [21], [22]. However, these
methods are constrained by the closed-set assumption, which
assumes an ideal match between the categories in the training
set and those in the testing set. In real-world scenarios,
novel categories that have not been seen during the training
stage can inevitably appear. The closed-set classifier tends
to incorrectly classify these samples as one of the known
categories. Different from the conventional closed-set clas-
sification problem, open-set recognition is more challenging
and realistic as it takes both known category classification and
unknown category detection into account.

Over the past few decades, researchers have extensively
investigated OSR methods in open-world environments. Early
studies relied largely on traditional machine learning algo-
rithms. For instance, POS-SVM [8] and 1-vs-set machine [23]
are representative SVM-based approaches employed for OSR
tasks. Mendes et al. [10] proposed a nearest neighbors distance
ratio open-set classifier based on the similarity between a
sample and its nearest known neighbors. Zhang et al. presented
a sparse representation-based classification (SRC) framework
to achieve open-set recognition [24].

With the advancement of deep learning techniques, many
OSR methods based on deep neural networks have been
proposed recently. According to [25], these methods can
be categorized into two main groups: discriminative models
and generative models. Among them, discriminative models,
such as MLS [12], CSSR [14] and OpenMax [26], focus on
learning a decision boundary to separate known classes from
unknown classes. On the other hand, generative models learn
the distribution of known classes and generate data to provide
the OSR model with prior knowledge about unknown classes.
GAN [16], [27], auto-encoder(AE) [28] are widely used to
generate unknown data for open-set recognition tasks.

Currently, scholars have significantly contributed to the
preliminary explorations of open-set SAR target recognition
[15], [16], [17], [29], [19]. However, existing methods relied
heavily on a predefined threshold to achieve SAR open-set
recognition. Therefore, we propose a threshold-free open-set
recognition network to tackle this problem.

B. Generative Adversarial Network
Generative adversarial network [30] is an impressive learn-

ing framework designed to generate new samples that resemble
real data, which involves two neural networks, i.e., the gen-
erator and the discriminator. By engaging in an adversarial
minimax game between these two networks, GAN is able to
produce highly realistic data. Thus, GAN has been widely
used in data augmentation, image-to-image translation, high-
resolution image generation, and more.
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Fig. 1. Overall framework of the proposed method.

To adapt to real-world scenarios, many OSR methods based
on generative models [16], [27] have leveraged the powerful
generation ability of GAN to synthesize samples from novel
categories. An example of such advancement is conditional
generative adversarial network (CGAN), which can generate
samples based on specific class labels, enhancing the quality of
data generation. These generated samples can provide valuable
prior knowledge about unknown data for the model.

However, the instability of GAN’s training continues to pose
a significant challenge for existing methods as it is difficult to
reach a balance between the generator and the discriminator.
Specifically, model collapse often leads to failure of training,
that is, the generator fails to capture the entire distribution
of the input data and only outputs a limited set of samples.
Therefore, this paper designs a diverse generation strategy to
mitigate this phenomenon.

III. METHODOLOGY

The proposed method consists of two components, i.e.,
the generative model G and the classification model D, as
depicted in Fig. 1. Among them, the function of the generative
model G is to generate unknown diverse samples outside the
distribution of known categories targets, which is used to assist
the classification model D in acquiring the ability to detect
unknown categories. Unlike existing threshold-based open-set
SAR target recognition methods, the classification model in the
proposed TfOsLN formulates the open-set problem as a K+1
class classification problem. In what follows, we elaborate on
each component of the proposed method.

A. Unknown Sample Generation

Compared with closed-set SAR target recognition, open-set
SAR target recognition is challenging due to the lack of prior
knowledge about unknown categories. Drawing on the merits
of generative adversarial network (GAN), a generative model
is developed to generate diverse unknown samples deviating
from known category distribution, which is intended to assist
the recognition model with the ability to detect unknown
categories. Therefore, the effectiveness of our method is
closely related to the quality of the generated SAR images

produced by the generator. If the generated samples lack
realism or diversity, the generative model cannot provide the
classification network with rich information about unknown
class. However, the model collapse problem, i.e., the generator
fails to capture the entire distribution of the input and ends up
replicating resemble samples. To mitigate this effect, we first
propose to establish a dual-input generation model, and then
leverage KL divergence to maximize the difference between
images synthesized by two noise inputs with the same label to
generate diverse samples of unknown categories. This strategy
effectively forces a more varied distribution. of generated SAR
images.

Let z1 and z2 be two random noise vectors with the
same label, KL divergence is leveraged to maximize the
difference between the distributions of images synthesized by
the generator. Mathematically, it is expressed as follows:

max KL [G(z1|y) ||G(z2|y)] (1)

where G(z1|y) and G(z2|y) represent generated images by the
noise vectors z1 and z2 given the class label y, respectively.

B. Threshold-free Open-set Recognition
In order to achieve open-set SAR target recognition, a

threshold-free open-set recognition model is developed under
the framework of GAN, as shown in Fig. 2.

The output of the threshold-free open-set recognition model
consists of two items, i.e., the classification score and the
adversarial score. Among them, the classification score is
used to realize target classification. The adversarial score is
exploited to assist the generative model in generating diverse
unknown samples that deviate from the known categories
distribution in an adversarial learning manner. The adversarial
score ranges from [0,1]. If the adversarial score is close to 1,
it indicates that the input is a real image; otherwise, it is a
generated image.

The recognition model should be highly sensitive to samples
of unknown categories in an open-world environment, it is
desirable that the extracted features of unknown categories be
as discriminative as possible. To this end, inspired by dynamic
convolution [31], we develop a dynamic-aware discriminator
to extract discriminative features according to input samples.
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Fig. 2. Network structure of (a) Generative model. (b) Classification
model. DConv denotes the dynamic convolution operation layer. c@k×
k, S = s, P = p, R = r indicates the this layer contains c output
channels and the kernel size of k × k convolution with stride = s,
padding = p and reduction ratio = r.

The dynamic-aware convolutional layer is the core of the
proposed dynamic-aware discriminator, which is depicted in
Fig. 3. Different from conventional CNN, the dynamic convo-
lution layer can update the convolution kernel with the help
of an attention mechanism, so as to dynamically extract more
representative features from different categories of images.
The operation of the dynamic convolutional layer is as follows:

y =(αw1 ⊙ αf1 ⊙ αc1 ⊙ αs1 ⊙W1 + . . .

+αwn ⊙ αfn ⊙ αcn ⊙ αsn ⊙Wn) ∗ x
(2)
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Fig. 3. Architecture of dynamic-aware convolution layer.

C. Multi-task Loss Optimization
It is well known that the optimization process of GAN is

considered as a minimax game between the generator G and
the discriminator D. The adversarial loss is defined as:

LGadv
= −E [logP (S = fake | Xfake)] (3)

LDadv
= E [logP (S = real | Xreal)] (4)

where Xreal and Xfake represent real SAR images and
generated ones, respectively. And P (S|X) = D(X) denotes
the probability of a given SAR image being real or fake.

Meanwhile, the model needs to judge the generated un-
known and known category samples in the adversarial game.
Namely, the classification loss for the generated images and
the real SAR images are defined as follows:

LGcls
= E [logP (C = c | Xfake)] (5)

LDcls
= E[logD(C = c | Xreal)]

+ E[logD(C = unknown | Xfake)]
(6)

where c is the label of one of the K known categories.
In order to enhance the generalization ability of the pro-

posed method, we propose to use the soft label instead of
the one-hot label during model training. Thus, LDcls

is the
label smoothing cross-entropy loss function. The soft label of
a sample is defined as:

y = (1− α)yhot + α/K (7)

where yhot is the one-hot label of a sample, and α is the
smoothing parameter.

As mentioned above, KL divergence is leveraged to avoid
model collapse of the generative model in the proposed
method, which is defined as:

LGdiv
= −KL [G(z1|y) ||G(z2|y)] (8)

In an open-set recognition task, it is more desirable to obtain
a discriminative embedding space with intra-class compactness
and inter-class divergence, which is not only beneficial for
known categories classification but also very meaningful for
enhancing unknown categories detection. Following this idea,
we introduce a novel embedding loss, i.e., single-center loss
[32], to learn a discriminative embedding space with intra-
class compactness and inter-class separability. The embedding
loss is defined as:

LDemb
= Mreal −Mfake +m

√
N (9)

where Mreal represents the average Euclidean distance be-
tween all real image representations and the prototype of
known categories targets c, and Mfake represents the average
Euclidean distance between all generated image representa-
tions and the prototype of known categories targets c. The role
of the margin m

√
N is to ensure that the distance measure-

based embedding loss LDemb
is always positive.

Mreal and Mfake are defined respectively as follows:

Mreal =
1

|Ωreal|
∑

i∈Ωreal

∥fi − c∥2 (10)

Mfake =
1

|Ωfake|
∑

i∈Ωfake

∥fi − c∥2 (11)

where Ωreal and Ωfake are the representation sets of real SAR
images and generated ones, respectively.
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Fig. 4. Each type of ground target of two datasets. (a) MSTAR dataset. (b) SAMPLE dataset.

Therefore, the proposed multi-task loss is composed of three
items, i.e., adversarial loss, classification loss, and embedding
loss. The total loss for the generative model and the classifi-
cation model are respectively summarized as:

LG = LGadv
+ LGcls

+ λG · LGdiv
(12)

LD = LDadv
+ LDcls

+ λD · LDemb
(13)

where λG and λD are two hyperparameters selected through
the experiments in Section IV-F.

IV. EXPERIMENTAL RESULTS
A. Dataset Description

To demonstrate the effectiveness of our proposed method,
this section conducts experiments on two public SAR datasets.
One dataset is the moving and stationary target acquisition
and recognition (MSTAR) [33] with 10 categories of military
targets, which has been widely used for ATR algorithm
evaluation. The other dataset is the synthetic and measured
paired and labeled experiment (SAMPLE) [34] with 10 types
of ground targets, which is composed of measured images and
simulated images from computer aided design (CAD) models.
The optical and SAR images of ten ground target classes for
two datasets are shown in Fig. 4(a) and Fig. 4(b), respectively.
It is worth mentioning that several categories of targets are the
same in both datasets. As a matter of routine [4], [5], [16],
SAR images with 17◦ depression are used for training, 15◦

are selected as testing data in MSTAR dataset. In SAMPLE
dataset, only measured SAR images with depressions from 14◦

to 16◦ are utilized for training, and images with 17◦ depression
are used for evaluation. Detailed data information for the
two datasets are listed in Table I. To reduce the redundant
background, all images in both datasets are cropped to 64×64
pixels regions of interest.

TABLE I
DETAILED DATA INFORMATION OF TWO PUBLIC DATASETS

MSTAR SAMPLE

Target Training data Testing data Target Training data Tesingt data

2S1 299 274 2S1 116 58

BMP2 233 195 BMP2 55 52

BRDM2 298 274 BTR70 43 49

BTR60 256 195 M1 78 51

BTR70 233 196 M2 75 53

D7 299 274 M35 76 53

T62 299 273 M60 116 60

T72 232 196 M548 75 53

ZIL131 299 274 T72 56 52

ZSU23/4 299 274 ZSU23 116 58

Total 2747 2425 Total 806 539

B. Experimental Setup

Adam optimizer is used for optimizing the proposed model.
The learning rate of both the generative model and the classi-
fication model is set to 0.00005, the number of training epochs
is 100, and the batch size is set as 32. In order to mitigate the
effect of class imbalance during model training, we randomly
sample 32/K generated images in each batch as unknown
SAR training samples to effectively train the recognition
network. For the four hyperparameters, we empirically set
α = 0.1, m = 0.3, λG = 0.5 and λD = 0.1 in the
following experiments. The proposed TfOsLN is implemented
with PyTorch framework in Python programming language.
All experiments are conducted on a personal laptop with an
AMD Ryzen 7 5800H CPU, an NVIDIA GeForce RTX3060
GPU, and 16 GB memory.
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TABLE II
FOUR EVALUATION METRICS OF EACH METHOD ON THE MSTAR AND SAMPLE DATASETS

Dataset MSTAR SAMPLE

Method Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy

MLS [12] 86.30 88.83 0.8754 87.51 89.31 92.78 0.9094 89.80

ARPL [13] 83.89 87.90 0.8595 85.81 88.44 90.81 0.8916 87.38

CSSR [14] 90.87 89.64 0.8972 89.44 91.70 88.65 0.8868 89.24

Fea-DA [15] 92.51 90.55 0.9122 90.77 95.14 91.09 0.9282 91.47

Mutitask Learning [16] 92.97 84.94 0.8823 86.35 90.47 92.65 0.9101 90.20

OpenMax [17] 86.80 69.71 0.7429 69.60 87.40 83.21 0.8440 80.80

CBC [19] 91.69 86.72 0.8827 86.31 93.37 93.40 0.9316 91.28

Ours 95.15 94.60 0.9481 95.09 97.61 99.14 0.9801 97.59

Fig. 5. Comparisons of AUROC on the MSTAR dataset.

C. OSR Performance Evalution

Following previous studies [15], [19], seven categories
of targets are selected as known, namely, 2S1, BRDM2,
BTR60, D7, T62, ZIL131, ZSU23/4 for MSTAR dataset, and
2S1, BMP2, BTR70, M1, M35, M548, ZSU23 for SAMPLE
dataset, while the other three categories of targets in two
datasets are selected as unknown targets respectively. To
illustrate the superiority of our proposed method, seven state-
of-the-art methods, including MLS [12], ARPL [13], CSSR
[14], Fea-DA [15], Mutitask Learning [16], OpenMax [17],
and CBC [19] are employed as competitors in this paper.

Four evaluation metrics, i.e., precision, recall, F1-score,
and accuracy, are adopted to comprehensively evaluate the
proposed method. These metrics are defined as follows:

precisioni =
TPi

TPi + FPi
, precision =

∑K
i=1 precisioni

K
(14)

recalli =
TPi

TPi + FNi
, recall =

∑K
i=1 recalli

K
(15)

F1i =
2× precisioni × recalli
precisioni + recalli

, F1 =

∑K
i=1 F1i
K

(16)

Fig. 6. Comparisons of AUROC on the SAMPLE dataset.

The experimental results of each method are presented
in Table II. Among them, accuracy measures the overall
performance of known class classification and unknown target
detection, and F1-score which balances precision and recall,
is used to comprehensively evaluate the performance of the
open-set recognition model. One can see from Table II that
four evaluation metrics of the proposed method are higher
than those of all competitors on two datasets.

Moreover, we employ another indicator to evaluate the
recognition performance in this experiment, i.e., area under
receiver operating characteristic curve (AUROC). AUROC is
a threshold-independent metric widely used to measure the
unknown class detection ability of OSR methods. To compute
the AUROC curve, we consider known classes as ‘positive’
while considering unknown classes as ‘negative’, and then
plot the true positive rate against the false positive rate at all
possible thresholds. Thus, AUROC effectively measures how
well an OSR model can distinguish between known classes
and unknown classes. The AUROC curves of each method on
the two datasets are depicted in Fig. 5 and Fig. 6, respectively.
Apparently, the AUROC indicator of the proposed method is
always better than that of competitors.
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It is noteworthy that both our proposed method and nearly
all competitors demonstrate superior recognition performance
on SAMPLE dataset in comparison to MSTAR dataset. This
discrepancy primarily comes from the fact that the training
set of SAMPLE dataset covers a broader range of depression
angles, which makes it easier for recognition models to capture
richer feature representations.

D. Impact of openness on OSR
In order to analyze the robustness of the proposed method

under different proportions of known and unknown categories,
the openness [7] is defined as follows:

openness = 1−

√
2× |CTR|

|CTR|+ |CTE |
(17)

where CTR is the number of training categories, and CTE is
the number of test categories. The closer openness is to 1, the
more open the environment is, while openness = 0 represents
that the problem is equivalent to the closed-set classification.

In this experiment, we reduce the known classes from 7 to
3, and the openness can be calculated with (17). Specifically,
we construct the set of known class targets by removing
one target class in each experiment following the right-to-left
order: 2S1, BRDM2, BTR60, D7, T62, ZIL131, ZSU23/4 for
MSTAR dataset, and 2S1, BMP2, M1, ZSU23, BTR70, M35,
M548 for SAMPLE dataset. The remaining types of targets
are selected as unknown targets, respectively. Under different
open scenarios, the experimental results of each method on
two datasets are shown in Fig. 7 and Fig. 8, respectively,
in which only F1 score and accuracy are presented due to
space constraints. As illustrated in Fig. 7 and Fig. 8, F1
score and accuracy of the proposed method fluctuate gently
with the change of the openness, while the two indicators
of all competitors change sharply. This is because a larger
openness means more open scenarios. As openness increases,
the model faces the challenge of identifying more unknown
targets with less information about known classes. Thus, it
becomes increasingly difficult for OSR models to maintain
high accuracy and F1 score. In this context, the proposed
method shows greater robustness compared to all competitors
in the open world. This can be attributed to the fact that
TfOsLN does not rely on a single rejection threshold, but
adaptively achieves open-set SAR recognition by learning
potential distribution of unknown classes.

(a) (b)

Fig. 7. Results with various openness on the MSTAR dataset. (a) F1-
score, (b) Accuracy.

(a) (b)

Fig. 8. Results with various openness on the SAMPLE dataset. (a) F1-
score, (b) Accuracy.

E. Visualization Results of Image Generation
In order to intuitively understand the diverse generation

strategy of unknown SAR images, this section comprehen-
sively analyzes the generation results from the perspective
of visualization. Seven classes of SAR images from MSTAR
dataset are used to train the proposed TfOsLN in the following
experiments. Fig. 9 compares real SAR images with generated
images during the training process. Each column of images
represents one of the known classes, and seven instances
are saved for each class. From a visual perspective, it is
clear that our proposed method captures the characteristics of
SAR ground targets, such as shape and shadow, enabling the
generation of highly realistic images.

1st epoch 11st epoch 26th epoch 71st epoch 96th epoch

. . .

Real SAR imagesGenerated SAR images

Fig. 9. Comparison between generated SAR images and real images.

Fig. 10. Visualization of open-set feature space.

Furthermore, we aim to generate unknown samples that are
highly close to real images but do not belong to any known
classes for open-set SAR target recognition tasks. We illustrate
the results of sample generation from the perspective of feature
distribution. Fig. 10 shows the feature space after training
via t-distribution stochastic neighbor embedding (t-SNE) vi-
sualization tool. One can see from Fig. 10 that the features
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of each known class are surrounded by generated unknown
features. This observation validates the generation ability of
the proposed TfOsLN. Therefore, our proposed method equips
the classification model with effective prior information about
unknown classes, enhancing its overall performance.

F. Impact of the multi-task loss weights
To determine the optimal values of the two weight hy-

perparameters λG and λD, for (12) and (13), we investigate
the impact of these two hyperparameters of the proposed
multi-task loss on the open-set recognition accuracy. The
experimental results on two datasets are shown in Fig. 11.
We set λG and λD of the multi-task loss from 0.1 to 0.9.
One can see that the recognition accuracy of our proposed
method generally remains above 91% and 93% with various
weights on MSTAR dataset and SAMPLE dataset. The results
obtained from the enumeration experiments demonstrate that
our method achieves highest recognition accuracy with λG and
λD at 0.5 and 0.1, respectively.

(a) (b)

Fig. 11. Impact of loss weights on OSR performance. (a) MSTAR
dataset, (b) SAMPLE dataset.

G. Ablation Studies
In this section, we conduct a series of ablation experiments

on the MSTAR dataset to verify the effectiveness of key
components of the proposed TfOsLN. The experimental setup
is the same as that of Section IV-C. For simplicity, on the basis
of GAN, the model includes a generator with dual inputs, or a
discriminator with dynamic-aware operation, or muti-task loss
are dubbed DI, DAO and MTL, respectively.

TABLE III
RESULTS OF ABLATION EXPERIMENT ON THE MSTAR DATASET

DI DAO MTL F1 score Accuracy

! ! ✗ 0.9158 92.45

! ✗ ! 0.9032 90.85

✗ ! ! 0.9345 93.81

! ! ! 0.9481 95.09

The results of the ablation experiment are presented in
Table III, where only F1 score and accuracy are listed due

to space constraints. As can be observed from Table III, each
key component contributes to boosting F1 score and accuracy
of the proposed TfOsLN in the open world.

V. CONCLUSION

In this paper, we propose a threshold-free open-set learning
network to achieve open-set SAR target recognition. Different
from the existing methods, we formulate the open-set SAR
target recognition problem as a K+1 classification problem
with the help of GAN framework, in which the discriminator
can directly work as an open-set classifier. The proposed
generator with dual inputs can generate diverse unknown
samples deviating from the distribution of known classes by
maximizing the KL divergence. The proposed dynamic-aware
discriminator can dynamically extract discriminative features
according to the input samples, which is helpful for both
the classification of known categories and the detection of
unknown categories. The proposed multi-task loss optimizes
the whole model in an adversarial manner, thereby improving
its K+1 classification performance. Experiments on two public
datasets illustrate that the proposed TfOsLN is competitive
with seven advanced open-set recognition methods. Mean-
while, we realize the limitation of our proposed method,
that is, the requirement of a sufficient number of known
samples to enable high-quality unknown sample generation.
We will further investigate how to achieve open-set SAR target
recognition with limited known samples. Moreover, we intend
to extend the K+1 recognition task into a K+N recognition
task to enhance its applicability.
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